

NETWORK AUTOMATION AT REANNZ

AARON MURRIHY
aaron.murrihy@reannz.co.nz

NZ

NETWORK AUTOMATION

WHY AUTOMATE?

* Save time; make operations scalable

* |Improve reliability of the network

* |Improve understandability of the network

 Makes documentation and monitoring easier to maintain

REA/N/\/Z REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

STEPS TO AUTOMATING A PROBLEM

1. Identify the problem
2. Decide if it’s worth automating

3. Write tool to solve problem
— Generate configuration
— Apply configuration to the network

4. Socialise your new tool

REA/N/\/Z REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

IDENTIFY THE PROBLEM
For historical reasons REANNZ uses LDP-signalled VPLSes.

REA/N/\/Z REANNZ Practical Networ k Automat ion — October 19

NETWORK AUTOMATION

IDENTIFY THE PROBLEM

This means every VPLS instance on every host must be configured with neighbours to be
fully meshed with every other host with the same VPLS ID.

REAAN/\/Z REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

IDENTIFY THE PROBLEM

HOST1:

set routing-instances vpls-5000 protocols vpls neighbor 172.24.2.1
set routing-instances vpls-5000 protocols vpls neighbor 172.24.3.1
set routing-instances vpls-5000 protocols vpls neighbor 172.24.4.1

HOST2:

set routing-instances vpls-5000 protocols vpls neighbor 172.24.1.1
set routing-instances vpls-5000 protocols vpls neighbor 172.24.3.1
set routing-instances vpls-5000 protocols vpls neighbor 172.24.4.1

HOST3:

set routing-instances vpls-5000 protocols vpls neighbor 172.24.1.1
set routing-instances vpls-5000 protocols vpls neighbor 172.24.2.1
set routing-instances vpls-5000 protocols vpls neighbor 172.24.4.1

HOST4:

set routing-instances vpls-5000 protocols vpls neighbor 172.24.1.1
set routing-instances vpls-5000 protocols vpls neighbor 172.24.2.1
set routing-instances vpls-5000 protocols vpls neighbor 172.24.3.1

REA/N/\/Z REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

IDENTIFY THE PROBLEM

If a VPLS is not fully meshed. Some parts of the network will be unable to talk to other
parts of the network, potentially only unidirectionally. Awful to diagnose.

REAAN/\/Z REANNZ Practical Network Automation — October 19

AUTOMATING

NETWORK AUTOMATION

IS IT WORTH AUTOMATING?

How much time does it take to do it by hand?
What are the consequences of it being wrong?
How easy is it to tell if it’s configured incorrectly?
Are there multiple ways to configure the service?

Will homogenous configurations make the network easier to
understand?

What do other members of your team think?

REA/N/\/Z REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

IS IT WORTH AUTOMATING?

On the REANNZ network today:

— Number of VPLSes = 244
— Number of neighbours configured = 4248
— Our largest VPLS has 31 hosts and 870 neighbour statements

Imagine someone asking you to make sure everything is fully meshed...

Worth Automating

REA/N/\/Z REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

IS IT WORTH AUTOMATING?

REANNZ

NETWORK AUTOMATION

IS IT WORTH AUTOMATING?

VPLSes can be configured to

— Tear off vlan headers on ingress and insert new ones on egress

— Pass packets leaving their vlan header intact

* Vlan IDs much match at all ends

— Translate/normalise vlan IDs

— Pass Q-in-Q packets

* Create multiple mac-learning domains

— Any number of other ways | haven’t mentioned or don’t know about.

Please, just do it already!

REA/N/\/Z REANNZ Practical Network Automation — October 19

ANNZ
IRONMENT

NETWORK AUTOMATION

MEET BENDER

 Monolithic repo

— Gives easy access to all internal tools and libraries
— Branch, write patch, code review, merge

— No hidden "pet” projects

— Easy(er) to refactor code and change APIs

* Miniconda Python environment
— “make install” to build

— Installs external packages without affecting the
main system

— Environment is reliably built on any host that needs it

REA/N/\/Z REANNZ Practical Network Automation — October 19 16

NETWORK AUTOMATION

MEET BENDER

* |Implements Python libraries for accessing the APls of our “sources of

truth” and other services
— NetDB
— phplPAM
— FreshDesk
— Google Apps
— PagerDuty
— Slack

Channels {m} Bender APP 11:05 AM
<> FortiManager policy package push initiated by yesh on admin.firewall.reannz.co.nz with comment "test"

operations

changes rnz-staff - completed successfully

general rnz-temp - completed successfully

REAAN/\/Z REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

MEET BENDER

 Implements wrappers around NETCONF for Junipers

— Pushes configuration
* Config lock on every host being configured
* commit check
* show | compare
* rollback
* TODO: commit confirmed

— @Grabs running state
* BGP/OSPF/LLDP Neighbours
* Interfaces
e Hardware
* Alarms
* Etc.

— Upgrades devices
* Compares pre and post state
* Cleans up storage and takes a backup disk image
* Initiates firmware upgrade
* Notifies an engineer of any issues

REA/N/\/Z REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

MEET BENDER

* Generates network configuration

Standardised configurations and user accounts
Member edge firewall ACLs

Member edge route policy

Standardised circuit types

Managed Firewall route policy

REA/N/\/Z REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION AT REANNZ

AARON MURRIHY
aaron.murrihy@reannz.co.nz

NZ

NETWORK AUTOMATION

e Gives you an outcome to work towards

* Gives you an idea of what options to cater for

aaron@nms-wlg:~$ vpls mesh --help
Usage: vpls mesh [OPTIONS]

aaron@nms-wlg:~$ vpls --help
Usage: vpls [OPTIONS] COMMAND [ARGS]...

Ensures all VPLSes on the network are meshed. If not, generates
configuration to fully mesh them.

Options:

-v, --verbose Verbose output, -vv for debug info
--help Show this message and exit.

Example usage:
vpls mesh -w

Options:
-w, --write Write config output to per-host file
--help Show this message and exit.

Commands:
mesh Ensures all VPLSes on the network are...

REAN REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

 Also makes it easier to integrate with your existing tooling environment

aaron@nms-wlg:~$ vpls --help
Usage: vpls [OPTIONS] COMMAND [ARGS]...

Options:
-v, --verbose Verbose output, -vv for debug info
--help Show this message and exit.

Commands:
add Creates a new VPLS on the network.
allocate Allocates the next available VPLS in IPAM...
mesh Ensures all VPLSes on the network are...
remove Delete ports from a VPLS.
wipe Remove all instances of a VPLS from the...

REAN REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

 Use click to implement CLI interfaces in Python

@click.group()
@click.option('-v', '--verbose', default=0, count=True,
help='Verbose output, -vv for debug info')
def main(verbose):
bender.logging.configure(level=bender.logging.verbose_to_level(verbose))

@main.command('mesh')
@click.option('-w', '--write', is_flag=True, help="Write config output to per-host file')

def mesh(write):
\b
Ensures all VPLSes on the network are meshed. If not, generates
configuration to fully mesh them.
\b
Example usage:
vpls mesh -w

nuan

REAN REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

Gather current (configured) VPLS state

def get_vplses_participants():

mman

Looks through the configs of all core MPLS hosts and builds up a list of
all VPLSes and all hosts that participate in that VPLS.

VPLS current state is grabbed by parsing rancid backed-up set config.

Returns dict structure of the form:

{
5000: ['hostl', 'host2', 'host3'],
5001: ['host2', "host8']

}

mman

REAN REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

Get the list of core MPLS hosts

Grab the list of Juniper core MPLS devices for NetDB
netdb = bender.api.netdb.NetDB()

hosts = netdb.get_hosts_names(vendor="'juniper', device_class='core')

REAN REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

GATHER STATE

We have a database, but no problem with a CSV or YAML file

< c

@ dbx.reannz.co.nz/device

DBX Organisations Membership Contacts Locations Devices Ports Circuits ®m

Devices

Copy

Device

and01

and02

and03

and04

and05

and06

csv

Location

AKL
Auckland, Citylink, Level 1, Telco House, 16 Kingston Street, Auckland

WLG
Wellington, Citylink, Level 2, Lambton House, 160 Lambton Quay Wellington

CHC
Christchurch, The Colocation Company, 21 Durham Street South, Christchurch

DUD
Dunedin, University of Otago, Room G06 444 Great King Street Dunedin

MDR
Chorus PoP, 113-115 Mayoral Drive, Auckland

FST
Chorus Exchange, Featherston St, Wellington

Manufacturer

JUN

JUN

JUN

JUN

JUN

JUN

Model

MX480

MX480

MX480

MX480

MX480

MX480

Search:

Active

True

True

True

True

mx480|

Logir

Alert

always

always

always

always

always

always

REA/N/\/Z REANNZ Practical Network Automation — October 19

27

NETWORK AUTOMATION

vplses_participants = {}
for host in hosts:
with open('%s/%s.set' % (CONFIG_DIR, host), 'r') as f:
for line in f:
Regex parses Juniper "set" config that looks like this:

FOF eaCh hOSt # set routing-instances vpls-5000 protocols vpls vpls-id 5000
vpls_id_regex = 'set routing-instances vpls-([0-9]+) " \
— |terate Config file 'protocols vpls vpls-id ([0-9]+)'
. . m = re.match(vpls_id_regex, line)
line-by-line if m:
vpls_designation = int(m.group(1))
— For each VPLS vpls_id = int(m.group(2))
. # Just do a quick sanity check here
* Add host to VPLS list assert vpls_designation == vpls_id

of participants
Create the VPLS info data structure if it doesn't
already exist
if vpls_id not in vplses_participants:
vplses_participants[vpls_id] = []

This host participates in this VPLS. Add it to the list
of participants
vplses_participants[vpls_id].append(host)

Ieturn vplses_participants

REAN REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

all_configs will be built with the structure:
{

hostl: [config_to_add_vpls_neighbour,

config_to_delete_vpls_neighbour],

host2: [config_to_add_vpls_neighbour]

#

}
all_configs = {}
for vpls_id,participants in vplses_participants.items():
Iog.info('Meshing vpls-{id_}"'.format(id_=vpls_id))

configs = mesh_vpls(vpls_id, participants)

Add any vpls meshing configs for this VPLS into all_configs
for host,lines in configs.items():
1f host not in all_configs:
all_configs[host] = []
all_configs[host] = all_configs[host] + lines

REAN REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

def mesh_vpls(vpls_id, participants):
For each of the participants in the VPLS, checks the configured VPLS
neighbours against the list of VPLS participants. If the configured list
1s different (wrong) in any way, generates config to make it right.

Returns dict of configs to add/remove neighbours keyed by host

{

'hostl': ['set routing-instances vpls-5000 protocols vpls neighbour 172.24.2.1'],
'host2': ['set routing-instances vpls-5000 protocols vpls neighbour 172.24.1.1",
'"delete routing-instances vpls-5000 protocols vpls neighbour 172.24.8.1"]

}

REAN REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

e For each host

— Build correct list
of neighbours

— Get the configured
list of neighbours

Regex parses Juniper "set" config that looks like this:

set routing-instances vpls-5000 protocols vpls neighbor 172.24.1.1

neighbour_regex = 'set routing-instances vpls-%s protocols vpls ' \
"neighbor (([0-9]{1,3}\.){3}[0-9]1{1,3})" % vpls_id

configs = {}

for host in participants:
To fully mesh a VPLS, I must have a neighbour statement for every
host that participates in the VPLS except for myself.
neighbours = [p for p in participants if p != host]

Use a DNS lookup to get the loopback address for each host.
We only care about referencing neighbours by loopback address now.
neighbour_loopbacks = set(get_loopbacks_from_dns(neighbours))

configured_neighbour_loopbacks = set()
with open('%s/%s.set' % (CONFIG_DIR, host), 'r') as f:
for 1line in f:
m = re.match(neighbour_regex, line)
if m:
configured_neighbour_loopbacks.add(m.group(1))

REAN REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

. L]
LOO ks for mlsmatCheS # Now lets look for any differences in the two sets. Any differences

are a misconfiguration of the mesh.

between CcO nflgu red mismatches = neighbour_loopbacks.symmetric_difference(

configured_neighbour_loopbacks)
and correct state if len(mismatches) > 0:
configs[host] = []
for mismatch in mismatches:
if mismatch in neighbour_loopbacks:

— Generate config to add

’ H # This is an unconfigured neighbour. Add it.
What doesn t EXISt’ bUt set_neighbour = 'set routing-instances vpls-{id_} protocols ' \
Sf1()l]|(j 'vpls neighbor {addr}'.format(id_=vpls_id,
addr=mismatch)
_ Generate Config tO delete X configs[host].append(set_neighbour)
else:
What doeS EXiSt, but # This neighbour no longer participates in the VPLS. Remove it.
delete_neighbour = 'delete routing-instances vpls-{id_} protocols ' \
shouldn’t 'vpls neighbor {addr}'.format(id_=vpls_id,

addr=mismatch)

configs[host].append(delete_neighbour)

return configs

REAN REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

e To STDOUT or file

Now return all meshing config to the user

for host,lines 1n all_configs.items():
output_config(lines, host, write)

REAN REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

aaron@®nms-wlg:~/generated$ vpls mesh -w

aaron@nms-wlg:~/generated$ 1s

and@3 andd6 andl7

aaron@nms-wlg:~/generated$ cat *

HHHHHHHHHHH

and@3

HHHHHH IR

delete routing-instances vpls-5004 protocols vpls neighbor 172.24.2.1
HHHHH R

and@6

HHHHHHHHHHHHHEH

set routing-instances vpls-5004 protocols vpls neighbor 172.24.3.1
HUHHHHHHHH

andl7

HHHHHHHH

set routing-instances vpls-5004 protocols vpls neighbor 172.24.3.1

REAN REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

aaron@nms-wlg:~/generated$ apply_config
--- and@3: config diff follows ---

[edit routing-instances vpls-5004 protocols vpls]
- neighbor 172.24.2.1;

--- and@6: config diff follows ---

[edit routing-instances vpls-5004 protocols vpls]
neighbor 172.24.17.1 { ... }
- neighbor 172.24.3.1;

--- andl7: config diff follows ---

[edit routing-instances vpls-5004 protocols vpls]
neighbor 172.24.6.1 { ... }
neighbor 172.24.3.1;

3 hosts will be updated

@ hosts already match proposed config
Commit changes? [y/N] (N in 600s): y
Confirmed yes

All config changes committed.

REAN REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

NOT SHOWN HERE

e Write unit tests!

— Ensure it’s generating config as expected
— Ensure it’s parsing VPLS “set” config correctly
— Ensure it’s finding mesh mismatches

e Get peer-reviewed!

— Ask a network-focused colleague to review functionality
— Ask a software-focused colleague to review coding style and readability

REA/N/\/Z REANNZ Practical Network Automation — October 19

36

NETWORK AUTOMATION

SOCIALISE YOUR NEW TOOL

aaron 2:45 PM
4. @here Just pulled a new firewall failover utility (based on the standardised firewall architecture) into production.
Untitled «

1 aaron@nms-wlg:~$ fwl_failover --help
2 Usage: fwl_failover [OPTIONS] LOCATION

3
4 Generate config to fail-over firewalls. Optionally, --failback will allow
vall +6 €fa1il nrimary hack +6 +hat fivrewall 0Onlyv A <cinAale 1oca+rion can he

&3

Thanks @yesh and @rprocter for reviewing the code

rprocter 2:49 PM
@aaron nice work

¥ yesh 2:52 pM
- yeah good work

n DanT 2:53 PM
very cool

REA/N/\/Z REANNZ Practical Network Automation — October 19

38

NETWORK AUTOMATION

CURRENT AUTOMATION

Device
Config

a

\ 4

Coded Business Logic

ey

N
—

Sources

Of
Truth

REAAN/\/Z REANNZ Practical Network Automation — October 19

40

NETWORK AUTOMATION

NEAR FUTURE AUTOMATION

Q
g e
o
—
Parser 9)
Device _qg’
Config g
Generator - [——
> Sources
O |e
S Of
O Truth

REAAN/\/Z REANNZ Practical Network Automation — October 19

NETWORK AUTOMATION

VENDOR AGNOSTIC CONFIG

* Python class tree structure
* Looks similar to a very, very cut-down version of OpenConfig

— With some key differences
* (In theory) trivial to automate new vendor devices

— Just implement a new parser and generator
— All existing “Coded Business Logic” continues to work

REA/N/\/Z REANNZ Practical Network Automation — October 19

42

NETWORK AUTOMATION

PARSER AND GENERATOR

* All parsing/generating implemented in one place

* Unit testing is easy

e Can deal with multiple device configuration types (e.g. EX, MX)
* Can deal with version specific functionality and syntax

REAN/\/Z REANNZ Practical Networ| k Automat ion — October 19

43

NETWORK AUTOMATION

GENERATOR

* Diffs pre and post-change agnostic config

* Generates the minimum configuration to implement that change
— Better co-existence with hand-configured configuration

REA/N/\/Z REANNZ Practical Network Automation — October 19

44

THE END

QUESTIONS?

AARON MURRIHY

aaron.murrihy@reannz.co.nz
help@reannz.co.nz

REA/N/\/Z REANNZ Practical Network Automation — October 19

45

